Comparison of the multiphasic model and the transport model for the swelling and deformation of polyelectrolyte hydrogels.

نویسندگان

  • Ligang Feng
  • Yuxi Jia
  • Xue Li
  • Lijia An
چکیده

Polyelectrolyte hydrogel is a ternary mixture of water, polymer network and mobile ions. The present paper examined two popular models describing the swelling and deformation behaviors of polyelectrolyte hydrogels, i.e. the multiphasic model and the transport model. The water flow, the network deformation and the ionic diffusion are coupled in the multiphasic model, and the gradient of the fluid pressure is taken as the driving force for the network deformation. However, the water flow is neglected in the transport model with the ionic osmotic pressure taking the role of fluid pressure. Two simplified experiments, i.e. the free swelling of a hydrogel sphere in response to the concentration change of the external salt solution and the bending deformation of a hydrogel strip under an external electric field, are simulated by the two models. Simulation shows that the two models lead to the same predictions for the swelling equilibrium of the hydrogel sphere but different predictions for the swelling kinetics of the hydrogel sphere and the deformation of the hydrogel strip under the external electric field. These are due to the fact that the two models are equivalent in thermodynamic equilibrium situations, but in thermodynamic non-equilibrium situations, the transport model is no longer applicable as it neglects the water flow in the hydrogel and takes the ionic osmotic pressure as a mechanical parameter to play the role of swelling pressure. The present work will be helpful for understanding the hydrodynamics of polyelectrolyte hydrogels and the application of the two models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrium Swelling Study of Cationic Acrylamide-Based Hydrogels: Effect of Synthesis Parameters, and Phase Transition in Polyelectrolyte Solutions

Cationic copolymer gels of acrylamide and [(methacrylamido) Propyl] trimethyl ammonium chloride (MAPTAC) were synthesized by free radical aqueous solution polymerization. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the equilibrium swelling capacity of the hydrogels. Based on Taguchi method a standard L16 orthogonal array with fiv...

متن کامل

Synthesis and structural properties of Polyvinylpyrrolidone based nanocomposite hydrogels for isoniazid drug delivery

In this study, several examples of hydrogels and nanocomposite hydrogels based on PVP with different content of montmorillonite nanoclay were prepared. Then, the swelling of hydrogels and kinetics of drug delivery of hydrogel in an environment similar to the body (pH 7.4) were examined. The effect of nanoparticle different percentages on the hydrogel was clearly observed. Then kinetics of drug ...

متن کامل

Novel Quaternary ammonium modified-tragacanth gum hydrogels for drug delivery applications with antimicrobial activity and release kinetic study

New antimicrobial hydrogels were prepared via reaction of functionalized-Tragacanth Gum biopolymer by glycidyltrimethylammonium chloride (QTG) with acrylamide (AM). Characterization of the QTG hydrogels with AM (QTG-AM) was carried out by thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and 1HNMR. Swelling behaviour of the QTG hydrogels was investigated on the p...

متن کامل

Antimicrobial Modified-Tragacanth Gum/Acrylic Acid Hydrogels for the Controlled Release of Quercetin

In this study, new antimicrobial hydrogels were prepared via reaction of functionalized-tragacanthgum (TG) biopolymer by quaternary ammonium functionalization of TG (QTG) with acrylic acid(AA). Characterization of the QTG hydrogels (QTG-AA) was carried out by FTIR,thermogravimetric analysis (TGA), and 1H NMR. Dynamic mechanical analysis, (DMA) wasconducted to characteriz...

متن کامل

Simulation of Drug Concentration Changes in Swollen Hydrogels with Different Compounds of Chitosan and Gelatin Based on PVA

Introduction: Mathematical modeling of drug release is one of the ways to improve the rate of drug diffusion and infiltration in swollen hydrogel based systems. Using this method can provide a better understanding of the mechanisms of drug control and its release. Hydrogels are a swollen biomaterial that needs to be controlled for use in drug release. Purpose and methodology: In this study, fiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 2011